日产精品久久久久久久性色,无码一区二区三区在线观看,精品国产乱码久久久久久直播,国语自产偷拍精品视频偷97,免费99精品国产自在现线观看

郵箱:pomy@tanzhenbio.com
QQ:1799715336
咨詢熱線:13173652190
首頁 > 研究進(jìn)展
PNA 合成
PNA 產(chǎn)品
多肽合成
研究進(jìn)展
CAS9蛋白相關(guān)文獻(xiàn)
發(fā)布時間:2017/4/28
  1. Laminar flow downregulates Notch activity to promote lymphatic sprouting. Choi D et al. (2017)  J Clin Invest In press.
  2. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in C. elegans. Kim S et al. (2017) Hum Mol Genet In press.
  3. Genetic Basis of Melanin Pigmentation in Butterfly Wings. Zhang L et al. (2017) Genetics In press.
  4. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Bressan RB et al (2017) Development In press.
  5. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Tang L et al (2017) Mol Genetics Genomics In press.
  6. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. Frosk P et al. (2017) J Med Genet In press.
  7. Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding. Schmidt ST et al. (2017) ACS Synth Biol In press.
  8. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes. Park KE et al. (2017)Hum Mol Genet 7:42458.
  9. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models. Cebrian-Serrano A et al (2017) PLoS One 0169887.
  10. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Perry M et al (2016) Nature 535(7611):280-4.
  11. Delivery of Cas9 Protein into Mouse Zygotes through a Series of Electroporation Dramatically Increases the Efficiency of Model Creation. Wang W et al. (2016) J Genetics Genomics In press.
  12. Efficient genome engineering approaches for the short-lived African turquoise killifish. Harel I et al. (2016) Nature Protocols. 11(10):2010-28.
  13. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Co-Conversion. Ge DT et al (2016) G3 (Bethesda) 6(10): 3197–3206.
  14. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. Frosk P et al. (2016)  J Medical Genetics 104296.
  15. Generation and characterization of tamoxifen-inducible Pax9-creER knock-in mice using CrispR/Cas9. Jifan F et al. (2016) Genesis 54: 490–496.
  16. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Tandon P et al. (2016) Dev Biology S0012-1606.
  17. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair. Hermans N et al. (2016) Nucleic Acids Res 44(14):6770-86.
  18. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Zhang L & Reed RD (2016) Nat Commun 7:11769.
  19. Pre-bilaterian origin of the blastoporal axial organizer. Kraus Y et al. (2016) Nat Commun 7:11694.
  20. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Kouranova E et al. (2016) Hum Gene Ther 27(6):464-75.
  21. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Gundry MC et al (2016) Cell Reports 17(5):1453-61.
  22. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis. Markert MJ et al. (2016)G3 (Bethesda) 6(4):905-15.
  23. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Miano JM et al. (2016) Arterioscler Thromb Vasc Biol 36(6):1058-75.
  24. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Square T et al. (2015) Development142(23):4180-7.
  25. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR/Cas9 Ribonucleoprotein Complexes. Paix A et al. (2015) Genetics 201(1):47-54.
  26. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. McCaffrey J et al. (2015) Nucleic Acids Res44(2):e11.
  27. Cell lineage tracing using nuclease barcoding. Schmidt ST et al. (2016) Cornell University LibraryEpub.
  28. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Basu S et al. (2015) Proc Natl Acad Sci U S A 112(13):4038-43.
  29. In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. Anderson BR et al. (2015) PLoS Genet 11(7):e1005349.
  30. CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Bhattacharya D et al. (2015) Dev Biology 408(2): 196-204.
  31. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Kistler KE et al. (2015) Cell Reports 11(1): 51-60.
  32. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Dan W et al. (2015) Hum Gene Ther 26(7): 432-442.
  33. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Hendel A et al. (2015) Nat Biotech 33:985-89.
  34. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Aida T et al. (2015)Genome Biology 16:87.
  35. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Ikmi A et al. (2014) Nat Commun 24(5):5486.
  36. Chapter Seventeen: Cas9-Based Genome Editing in Xenopus tropicalis. Nakayama T et al. (2014)Methods Enzymol (Editor J A Doudna & E. J. Sontheimer) 546:355-375.


打印此文】【關(guān)閉窗口
上一篇:

下一篇:
PNA 產(chǎn)品
多肽合成
關(guān)于泰禾
分享至:
© 2017 杭州泰禾生物技術(shù)有限公司 所有權(quán)利   備案號 浙ICP備17021194號